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Abstract. The long-time correlations of fluctuations of lattice displacements in the quantum
paraelectrics SrTiO3 and KTaO3 are studied within the framework of the mode-coupling theory
of the dynamic transition from an ergodic to a non-ergodic state caused by defects. It is shown
that the very hard local non-symmetry-breaking defects formed by the oxygen vacancies can
induce the dynamic transition atTd . The low-temperature non-ergodic state is characterized by
long-time correlations of local fluctuations of the polar displacements, which continuously arise
for T 6 Td . Simultaneously, the local non-symmetry-breaking defects lead to the appearance
of long-time correlations of long-wavelength fluctuations of acoustic displacements via the local
random piezoelectric coupling forT 6 Td . The random local piezoelectric coupling is caused
by the electrostrictive interaction, which is modified by the random electric fields of the frozen
symmetry-breaking defects. The conditions that must be met for the dynamic transition to be
induced by the oxygen vacancies are analysed. It is also shown that the unavoidable oxygen
vacancies in the nominally pure SrTiO3 and KTaO3 are quite sufficient in number to cause the
non-ergodic state. The role of the dynamic transition in the formation of the glass state for
lightly doped KTaO3 and SrTiO3 is discussed.

1. Introduction

It is well known that quantum paraelectrics (QPE) with the perovskite structure ABO3,
such as strontium titanate (SrTiO3) and potassium tantalate (KTaO3), show a strong increase
in dielectric susceptibility at low temperatures, which is caused by softening of the polar
transverse optical modes. Over the temperature rangeT > 50 K, the dielectric susceptibility
follows the usual Curie–Weiss law with the extrapolated ferroelectric transition temperature
Tc. However, the divergence does not occur atTc. It is suggested that quantum fluctuations
suppress the ferroelectric long-range order at low temperatures. As a result, the QPE
do not undergo a phase transition, and the paraelectric state persists down to the lowest
temperatures,T → 0 [1]. Nevertheless, the ferroelectric phase transition can be induced by
the introduction of even small concentrations of impurities (of dipole [2, 3] or quadrupole [4]
type) or application of uniaxial stress [5]. Usually, it is suggested that the ferroelectric phase
transition in the QPE can be induced by local symmetry-breaking (SB) defects [2, 3], or the
soft non-symmetry-breaking (NSB) defects that lead to an increase of the local ferroelectric
transition temperature [6].

Raman spectroscopy and inelastic neutron scattering studies have revealed the
tremendous effect of the oxygen vacancies on the ferroelectric soft mode in reduced SrTiO3
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[7]. Similar results have been obtained for KTaO3 [8]. In these cases, the oxygen vacancies
act as very hard local NSB defects [7], which give rise to a decrease of the local ferroelectric
transition temperature. Unfortunately, the microscopic nature of the very strong NSB defects
formed by the oxygen vacancies is unknown, and cannot be explained by the weak effect
of dilatational centres via the electrostriction [7]. For the QPE, it is suggested that the hard
NSB defects lead only to stiffening of the ferroelectric mode.

However, the studies of the three-dimensional latticeϕ4-model with NSB defects [9–
11] have shown that NSB defects (and hard NSB defects also) and/or anharmonicity of the
pure lattice can give rise to a dynamic transition from an ergodic to a non-ergodic state.
The non-ergodic state is characterized by the formation of a long-time correlation (LTC) of
the fluctuations of the lattice distortions forTd > Tc, which correspond to the appearance
of quasi-static displacements (precursor order clusters). Generally, the appearance of a
non-zero value of the LTC of the fluctuations in the limitt → ∞ gives rise to ergodic
breaking [12, 13]. Similar dynamic transitions from an ergodic to a non-ergodic state
within the framework of the self-consistent mode-coupling approximation were found for
the liquid–glass transition [14], orientational glasses [15], and particle localization in random
potentials [16].

The peculiarities of the dynamic transition are determined by the form of the non-linear
interaction or anharmonicity of the lattice. The anharmonicity of theϕ4-model without
defects leads to a discontinuous appearance of the LTC of the lattice distortions [10, 11],
while the NSB defects give rise to a continuous formation of LTC of the lattice distortions
for T 6 Td [9, 10]. In the case of NSB defects, the temperatureTg lies far fromTc [9, 10],
while Td , the temperature of the discontinuous dynamic transition, lies in the vicinity ofTc
but outside the critical region [11].

As noted above, the ferroelectric soft modes in the QPE take small but finite values as
T → 0 and the NSB defects induced by oxygen vacancies are very strong. In this case,
the conditions are more suited to a continuous dynamic transition than to the discontinuous
dynamic transition that can take place in the vicinity ofTc. It should pointed out that studies
of the dynamic transition induced by the hard NSB defects give us the opportunity to clarify
the role of reduction treatment in the formation of the non-ergodic state in ferroelectric
crystals. In the case of very strong NSB defects formed by the oxygen vacancies, only a
very small concentration of defects is required in order to induce the dynamic transition. As
a rule, there are unavoidably oxygen vacancies in the nominally pure QPE. Therefore, studies
of the dynamic transition induced by the unavoidable oxygen vacancies in the nominally
pure KTaO3 and SrTiO3 are very important. The latest investigations of the effect of the
cooling rate on the long-time dependence of the dielectric constant [17] reveal the existence
of a non-ergodic state not only in the dipole glass state of K1−xLi xTaO3 (x 6 0.025) but
also in nominally pure KTaO3. The results have been discussed in terms of a non-ergodic
ageing phenomenon observed in the spin-glass state [18]. Unfortunately, this treatment
cannot explain the appearance of this same non-ergodic state in the nominally pure KTaO3,
where the only unavoidable SB defects are non-interacting ones. In addition,181Ta NMR
measurements on nominally pure and lightly Nb-, Li-, and Na-doped KTaO3 crystals [19]
have shown that Ta ions suddenly site in a local non-cubic environment on a timescale of
t > 10−7 s for T 6 40 K. The sudden formation and continuous increase in magnitude of
quasi-static displacements of Ta ions are not accompanied by a static structural modification
of the lattice forT 6 40 K. This phenomenon is like the continuous dynamic transition.
The measurements also demonstrate that the sharp appearance of the quasi-static distortions
of the lattice forT 6 40 K does not depend on there being a weak concentration of SB
defects, and, in fact, is not connected with the SB defects [19]. For the low-temperature
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region of the QPE, the SB defects are frozen and act as random fields. However, studies
of a model system for dipole glasses (the mixed crystals of Rb1−x(NH4)xH2PO4) [20] show
that the random electric fields can modify the electrostrictive interaction of the polarization
and elastic deformation, which leads to the formation of the acoustic anomalies of the dipole
glass state. The electrostriction is the main cause of the coupling of the polarization and
elastic deformation in the QPE. In this case, the modified interaction can play an important
role in the formation of the LTC of the elastic deformation in the systems with random
fields. Hence, consideration of the conditions that must be met for a dynamic transition to
be induced by the hard NSB defects in the QPE with SB defects requires the presence of
the random electric fields to be taken into account.

It should be noted that the results of the work described in [19] are discussed there as
representing a possible case of transition-like phenomena, which were detected forT ' 37 K
in SrTiO3 [21]. These phenomena are treated in terms of an anharmonicity of a defect-free
lattice [22, 23, 27]. Nevertheless, the anomalies [24]—in particular forT ' 32 K [25, 26]—
which are considered as results of transition-like phenomena may in fact be connected with
the unavoidable oxygen vacancies [23, 26].

The main purpose of this paper is to study the sharp appearance of the LTC of the
polar displacements caused by oxygen vacancies in the QPE. The consideration is carried
out on the basis of the mode-coupling theory of a dynamic transition from an ergodic to
a non-ergodic state induced by the hard NSB defects. The effect of the random electric
fields on the formation of the LTC of the elastic deformations is investigated also. It will
be shown that even the unavoidable NSB defects formed by the oxygen vacancies can give
rise to a dynamic transition in the nominally pure QPE.

The article is organized as follows. In section 2 we present the model Hamiltonian that
takes into account the effects of the strong local NSB and the weak SB defects on the polar
optical soft modes and the electrostrictive interaction of the polarization with the elastic
deformation. In section 3 we consider the closed dynamic equations for the polar and the
elastic displacement–displacement relaxation functions within the framework of the mode-
coupling theory. In section 4 we show, on the basis of the self-consistent equations for
the non-ergodic parts of the relaxation functions, that defects like the oxygen vacancies can
induce a dynamic transition from an ergodic to a non-ergodic state in QPE. We also analyse
the conditions that must be met for the dynamic transition to be induced by the unavoidable
oxygen vacancies in the nominally pure SrTiO3 and KTaO3. Finally, in section 5, we list
our conclusions.

2. The model Hamiltonian

The lattice of QPE exhibits a ferroelectric instability, which is described by the Hamil-
tonian [28]

Hph
o =

∑
r,α

1

2

[
µξ̇2

α(r)+ Aξ2
α(r)+ C

∑
r′
(ξα(r

′)− ξα(r))2
]
+
∑
r

Uah(r) (1)

Uah(r) = B11

4

[
ξ4

1 (r)+ ξ4
2 (r)+ ξ4

3 (r)
]+ B12

2

[
ξ2

1 (r)ξ
2
2 (r)+ ξ2

1 (r)ξ
2
3 (r)+ ξ2

3 (r)ξ
2
2 (r)

]
(2)

where A < 0 is the condition for ferroelectric instability, which is stabilized by the
anharmonic termsUah(r), the local polarization is defined by thePα(r) = zξα(r)/vc
(z is the electric charge,vc = a3 is the volume of a cell,a is the lattice constant),µ is the
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reduced mass. Using the Fourier transforms

ξα(r) = 1√
µN

∑
kν

eνα(k)yν(k)e
ik·r

the Hamiltonian (1) can be expressed in terms of ferroelectric soft modes for the paraelectric
state in the long-wavelength limit as [28]

Hph
o =

∑
k,ν

1

2

[
ẏν(−k)ẏν(k)+ w2

ν(k, T )yν(−k)yν(k)
]
. (3)

Here the ferroelectric soft modes have the usual form

w2
ν(k, T ) = w2

ν(0, T )+ s2k2

w2
ν(0, T ) = δνν�2

o +∆ν(T )
(4)

with �2
o = A/µ ands2 ≈ Ca2/µ. The ferroelectric instability (�2

o < 0) is stabilized by the
anharmonicity of the lattice∆ν(T ), which is mainly caused by the term (2) in the form

∆ν(T ) =
∑
γq

B

(
ν ν γ γ

0 0 −q q

) 〈
yγ (−k)yγ (k)

〉
where the first coefficient can be expressed asB11 and B12, and 〈yγ (−k)yγ (k)〉 is
the thermodynamic mean square displacement fluctuation. For the QPE, the condition
∆ν(T ) = δνν∆(T ) is realized. This leads tow2

ν(0, T ) = δννw
2
o(0, T ). The temperature

dependence of∆(T ) is determined by〈
yγ (−k)yγ (k)

〉 = h̄

2wγ (k, T )

[
coth

(
h̄βwγ (k, T )

2

)]
(5)

where β = 1/kBT . For a lattice which undergoes a ferroelectric phase transition, the
conditionw2

o(0, Tc) = �2
o +∆(Tc) = 0 is realized. The identifying feature of the quantum

paraelectrics SrTiO3 and KTaO3 is that

w2
o(0, T = 0) = �2

o +∆(T = 0) > 0

(see [29] and [30]). In this case, due to quantum mechanical zero-point oscillations, the
ferroelectric instability is suppressed by the quantum mechanical zero-point fluctuations
that give rise to the non-zero value of the mean square displacement fluctuations (5) near
T = 0, and the paraelectric state remains stable down to the lowest temperatures. This
gives rise to the peculiarities of the temperature dependence of the soft modesw2

o(0, T ).
As follows from (5), the temperature dependence ofw2

o(0, T ) in the QPE is linear inT
for large kBT > h̄wo(k, T ) (the classical region) and temperature independent for small
kBT � h̄wo(0, 0) (the quantum region). As a result, the ferroelectric modew2

o(0, T ) in
the QPE softens asT → 0 and takes the small valuew2

o(0, T = 0) > 0 nearT = 0. For
further details on this topic, we refer the reader to [29] and [30].

The interaction of the polarizationPα(r) with the elastic deformationuαβ(r) in the QPE
takes place via the electrostriction. The electrostriction is the third-order anharmonic term

Hstr
o−a = −vcDαβγ δ

∑
r

Pα(r)Pβ(r)uγ δ(r)

uαβ(r) = 1

2

[
∂uα(r)

∂rβ
+ ∂uβ(r)

∂rα

] (6)

whereuα(r) is the displacement centre of mass of a unit cell. It also contributes to the
formation of∆(T ) in (4) [28]; however, this contribution is small (the second order of the
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perturbation theory) in comparison with the main contribution from the term (2) (the first
order of the perturbation theory).

Let us consider the effects of defects on the lattice. In this paper, we consider the case
of a small concentration of independent defects. The interactions of the defects with the
lattice have the form

Hd =
∑
r,α

1

2
c(r)(Ad − A)ξ2

α(r)+
∑
r,α

Erfα (r)ξα(r)

c(r) =
∑
ri

δrri = c(r)+1c(r).
(7)

HereAd < 0 andAd > 0 correspond to the soft and the hard local NSB defects at sites
ri with the concentrationc(r). c(r) = c is the mean concentration, and1c(r) = c(r)− c
is the fluctuation of the concentration with

1c(r) = 0 1c(r)1c(r′) = δrr′c(1− c). (8)

E
rf
α (r) represents the random field induced by the local SB defects (E

rf
α (r) = 0); the

overbar indicates configurational averaging. The defects (7) can modify the parameters of
the lattice. So, the local NSB defects modify the parameterA as follows:

A(r) = A+ c(Ad − A)+1c(r)(Ad − A) (9)

whereas the random local fieldsErfα (r) of the SB defects give rise to displaced oscillators
with the thermal fluctuationsξ ′α(r) near the new equilibrium positionsξ stα (r):

ξ ′α(r) = ξα(r)− ξ stα (r). (10)

In terms of theξ ′α(r) andξ stα (r), the anharmonic interactionsHstr
o−a are modified. Using the

Fourier transforms

ξ ′α(r) =
1√
µN

∑
k

ξ ′α(k)e
ik·r = 1√

µN

∑
kν

eνα(k)xν(k)e
ik·r

uα(r) = 1√
MN

∑
k

uα(k)e
ik·r

one can represent the random local piezoelectric coupling, which is the main contribution
of the third-order anharmonic interaction (6), in the form

Hstr
o−a = −

∑
pkq

Q

(
ν µ γ

k p q

)
ξ stν (k)xµ(p)uγ (q)

Q

(
ν µ γ

k p q

)
= i

λ2vc

2
√
NM

(Dαβγ δ +Dβαγ δ)e
ν
α(k)e

µ
β (p)qδ1(k + p+ q)

(11)

where the usual electrostrictive term, which is expressed in terms of thexν(k) and theuα(k)
only, can be omitted, because it does not give rise to any dynamic anomaly [20],N is the
total number of cells in the lattice,M is the mass of a cell,1(k1+· · ·+kn) is equal to one
or zero depending on whetherk1+ · · · + kn is equal to a vector of the reciprocal lattice or
not, andλ2 = z2/v2

cµ. It is such an effect of theErfα (r) on the lattice with electrostrictive
interaction that is observed in the mixed crystals Rb1−x(NH4)xH2PO4 [20]. Using the lattice
parameters modified by the defects,H

ph
o can be represented in the long-wavelength limit as

Hph
o =

∑
k,ν

1

2

[
ẋν(−k)ẋν(k)+ w2

ν(k, T , c)xν(−k)xν(k)
]

+
∑
pkq

1

2
Q

(
ν µ

k p q

)
1c(k)xν(p)xµ(q) (12)
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where the modified ferroelectric soft modes have the form

w2
ν(k, T , c) = w2

o(0, T , c)+ s2k2

w2
o(0, T , c) = �2

o+∆(T )+ cG (13)

with G = (Ad−A)/µ. The second term in (12) represents the random transition temperature
with

Q

(
ν µ

k p q

)
= 1√

N

∑
α

Geνα(p)e
µ
α (q)1(k + p+ q).

In terms of the displacementsuα(k), the Hamiltonian of the acoustic modes can be
written in the long-wavelength limit as

Hph
a =

∑
k

1

2

[
u̇(−k) · u̇(k)+ Aαβ(k)uα(−k)uβ(k)

]
Aαβ(k) = v2

t k
2gtαβ + v2

l k
2glαβ

(14)

where gtαβ = δαβ − nαnβ is the projection operator of the transverse acoustic mode,
glαβ = nαnβ is the projection operator of the longitudinal acoustic mode, andnα = kα/k.

Using (11)–(14), the model Hamiltonian, which takes into account the effect of the
defects on the lattice parameters, has the form

H = Hph
o +Hph

a +Hstr
o−a. (15)

As indicated above, the quantum fluctuations are very important in the study of the low-
temperature phase in the QPE and, therefore, the quantum commutation relations have to be
taken into account. The commutation relations for the ferroelectric modes have the usual
form [

xν(−q), ẋµ(k)
] = iδνµ1(k − q)

[x, x] = [ẋ, ẋ] = 0.

The commutation relations for acoustic modes are written in the form[
uα(−q), u̇β(k)

] = iδαβ1(k − q)
[u, u] = [u̇, u̇] = 0.

3. Dynamic equations

To study the dynamic behaviour, we derive the dynamic equations for the relaxation function
8ij (t). The function8ij (t) is defined by [31]

8ij (t) = (Ai |e−iLt |Aj) = 1

β

∫ β

0
dτ

〈
Ai(t − iτ), Aj

〉
(16)

where 〈· · ·〉 is the thermodynamic average of a set secular dynamic variables{Ai},
Ai = A′i − 〈A′i〉 is the dynamic fluctuation ofA′i , andLAi = [H,Ai ] is the Liouville oper-
ator. The relaxation function8ij (t = 0) determines the static thermodynamic susceptibility

χij = β(Ai |Aj) = β8ij (t = 0). (17)

The long-time anomalies of8ij (t) can be characterized by singularities of the Laplace
transform:

8ij (z) = −(Ai |(z− L)−1|Aj) = i
∫ ∞

0
dt eizt8ij (t) (18)
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for z→ 0 for Imz > 0. 8ij (z) defines the Kubo susceptibilityχij (z) as follows:

χij (z)− χij = βz8ij (z). (19)

Within the framework of the Mori projection method, the relaxation function8̂(z) obeys
the matrix equation [31][

z I−Ω−Σ(z)
]
Φ(z) = −β−1χ(z) (20)

where the matrixΩ is given by

�ij = β(Ai |L|Ak)χ−1
kj (21)

and the relaxation kernelΣ(z) is given by

6ij (z) = β(QLAi |(z−QLQ)−1|QLAk)χ−1
kj (22)

whereQ = 1− P is the projector onto the space of non-secular variables; the projector
onto the space of secular variablesP is defined by

PA =
∑
ij

Ai (Ai |Aj)−1(Aj |A). (23)

Here we study the anomalies of the dynamic behaviour of the QPE on the basis of
the set of secular variables{Ai} = {uα(k), u̇α(k), xν(k), ẋν(k)} for the averaged relaxation
function

8ij (t) = 1

β

∫ β

0
dτ

〈
Ai(t − iτ), Aj

〉
(24)

within the framework of the virtual-crystal approximation.
The matrix static thermodynamic susceptibility (17) has the form

χ(k) =


χa(k) 0 0 0

0 I 0 0
0 0 χo(k) 0
0 0 0 I

 (25)

where the displacement–displacement susceptibility of theuα(r) is given by

χaαβ(k) = β(uα(−k)|uβ(k)) = Aαβ(k)−1 (26)

and the conjugate momentum susceptibilities are given by

β(u̇α(−k)|u̇β(k)) = δαβ (27)

β(ẋν(−k)|ẋµ(k)) = δνµ (28)

while the displacement–displacement susceptibility of thexν(k) is given by

χoνµ(k) = β(xν(−k)|xµ(k)) =
δνµ

w2
o(T , c,k)

. (29)

Here the ferroelectric modes have the form (13).
For the matrixΩ, equation (21), the matrix elements(Ai |L|Ak) are given by

(Ai |L|Ak) = β−1


0 iδαβ 0 0
−iδβα 0 0 0

0 0 0 iδνµ
0 0 −iδµν 0

 . (30)
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Using the (25) and (30), the matrixΩ is written as

Ω =


0 iI 0 0

−iχa(k)−1 0 0 0
0 0 0 iI
0 0 −iχo(k)−1 0

 . (31)

The matrix of the relaxation kernelΣ(z,k), equation (22), has the form

Σ(z,k) =


0 0 0 0
0 Σa(z,k) 0 0
0 0 0 0
0 0 0 Σo(z,k)

 (32)

with non-vanishing elements

6σ
ij (z,k) = β(QLȦi |(z−QLQ)−1|QLȦj )k

whereσ = a andσ = o correspond to secular variablesu̇α(k) and ẋν(k). Unfortunately,
the relaxation kernels have an intricate form. The form of6σ

ij (z,k) can be simplified by
making a mode-coupling approximation, i.e. the relaxation kernel becomes a power of the
relaxation function, taking into accountQLQ→ L [9, 15, 32]. In addition, configurational
averaging has to be carried out. In this work, it proceeds by means of the VCA. Within the
framework of the VCA, the relaxation kernel can be represented as a power of the averaged
relaxation functionsΦσ (z,k) (see [9] and [15]). As a result, the relaxation kernelsΣσ (z,k)
are given by

6a
γρ(z,k) = −β

∑
p

Q

(
ν µ γ

−k − p p k

)
Q

(
ν µ ρ

k + p −p −k
)

× ξ stµ (−p)ξ stµ (p)8o
νν(z,−p− k) (33)

6o
νν(z,k) = −β

∑
p

Q

(
µ ν

p −p− k k

)
Q

(
µ ν

−p p+ k −k
)

× 1c(−p)1c(p)8o
µµ(z,−p− k)

− β
∑
p

Q

(
ν µ γ

k p −p− k
)
Q

(
ν µ ρ

−k −p p+ k
)

× ξ stµ (−p)ξ stµ (p)8a
γρ(z,−p− k) (34)

where8a
αβ(z,k) is the acoustic displacement–displacement relaxation function

8a
αβ(z,k) = 8uu

αβ(z,k) = −(uα(k)|(z− L)−1|uβ(k)) (35)

and8o
νν(z,k) is the optical displacement–displacement relaxation function

8o
νν(z,k) = 8xx

νν (z,k) = −(xν(k)|(z− L)−1|xν(k)). (36)

It should be pointed out that the VCA can be used in the case of independent defects.
However, this condition cannot be satisfied for the concentrations for which the correlations
between the defects arise. In the soft lattice of the QPE, this effect can be important for
concentrations of the SB defects ofcd > 10−3 (see [2] and [3]) and of the NSB defects
formed by oxygen vacancies withc > 10−2 [7].



Long-time correlations in SrTiO3 and KTaO3 10341

Using (20), (25), (31), and (32), we can obtain the dynamic matrix equations:
zI −iI 0 0

i(χa)−1 zI−Σa 0 0
0 0 zI −iI
0 0 i(χo)−1 zI−Σo




Φuu Φuu̇ Φux Φuẋ

Φu̇u Φu̇u̇ Φu̇x Φu̇ẋ

Φxu Φxu̇ Φxx Φxẋ

Φẋu Φẋu̇ Φẋx Φẋẋ



= − β−1


χa 0 0 0
0 I 0 0
0 0 χo 0
0 0 0 I

 . (37)

For the first column of the matrixΦ in (37), we obtain

zΦuu − iΦu̇u = −β−1χa (38)

and

i(χa)−1Φuu + (zI−Σa)Φu̇u = 0. (39)

After elimination ofΦu̇u, we find the equation for the displacement–displacement relaxation
matrix Φuu = Φa(z,k):[
z2I− zΣa(z,k)− χa(k)−1

]
Φa(z,k) = −β−1

[
zI−Σa(z,k)

]
χa(k). (40)

Using the third column of the matrixΦ, a similar equation is obtained for the displacement–
displacement relaxation matrixΦxx = Φo(z,k):[
z2I− zΣo(z,k)− χo(k)−1

]
Φo(z,k) = −β−1

[
zI−Σo(z,k)

]
χo(k). (41)

From the closed set of dynamic equations (33), (34), (40), and (41), one can determine
the displacement–displacement relaxation function8σ

ij (z,k). Using the8σ
ij (z,k), the

corresponding correlation function〈Ai(t), Aj 〉 can be obtained by means of the fluctuation-
dissipation theorem [31]:

1

2
〈Ai(t), Aj 〉 =

∫ +∞
−∞

dω

π
e−iωt βω

1− e−βω
Im8σ

ij (z = ω + iε). (42)

As a result, the time dependence of the correlation functions〈Ai(t), Aj 〉 enables us to study
the changes of the dynamic behaviour of the QPE.

4. The non-ergodic state induced by defects

The type of the dynamic state (ergodic or non-ergodic) is determined by the behaviour
of the long-time correlation function of the fluctuations〈Ai(t →∞), Aj 〉. In the ergodic
state, there is a decay of the correlation function of the fluctuations over time to zero:
〈Ai(t →∞), Aj 〉 = 0. In the non-ergodic state, there is a decay of the correlation function
of the fluctuations over time to a non-zero value:〈Ai(t → ∞), Aj 〉/2 = Lσij > 0. As
seen from (42), the non-zero value of the non-ergodic parameterLσij > 0 corresponds the
spectral function

Im8σ
ij (z = ω + iε) = πLσij δ(ω)+ regular terms

which demonstrates the central-peak phenomenon, or the relaxation function in the form
[32]

8σ
ij (z) = −

Lσij

z
. (43)
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Let us transform (40) and (41) into the form (19). We have

βLσ (k) = β lim
z→iε

(−zΦσ (z,k)) = χσ (k)− χσ (z,k)

χσ (z,k) = 1

zΣσ (z,k)+ (χσ (k))−1

(44)

whereχσ (z,k) is the matrix of the Kubo susceptibility [31], andχσ (k) is the matrix of the
thermodynamic susceptibility (equations (26) and (29)). As seen from (44), the non-ergodic
state takes place (Lσ (k) > 0) if the conditions

lim
z→iε

z6σ
ij (z,k) > 0

are fulfilled.
Let us study the condition that must be met for the dynamic transition from an ergodic

to a non-ergodic state to occur in detail. To simplify further consideration, we use the
approximations for6o

νν(z,k) of (34). (i) We neglect the second term in6o
νν(z,k) (the case

of strong NSB and weak SB defects). (ii) As noted above, the lattice of the QPE does not
undergo a ferroelectric phase transition and does not have a critical region. In this case, the
consideration can be carried out in terms of a mean-field-type approximation that gives a
k-independentLoνν(k) ≈ Loνν non-ergodic parameter. This approximation was also used for
the study of the appearance of the dynamic transition from an ergodic to a non-ergodic state
outside the critical region of the ferroelastic phase transition for the mixed cyanide crystals
K(CN)xBr1−x and (KCN)x(NaCN)1−x [15]. As follows from (8), the correlation function
of the density of the NSB defects is alsop-independent:1c(−p)1c(p) = c(1− c). As a
consequence of the proposed approximations, the optical relaxation kernel isk-independent:
6o
νν(z,k) ≈ 6o

νν(z). Using the polarizationPα(k) instead of the variablesxν(k), the self-
consistent equations (34) and (41) can be written in the more convenient form for one of
the 〈100〉 directions:

βL
p
αα/χ

p
αα(k)

1− βLpαα/χpαα(k) = −z6
p
αα(z)χ

p
αα(k) =

c(1− c)G2

λ4
βLpααχ

p
αα(k). (45)

Here the relationsLpxx = Lpyy = Lpzz are assumed, andLpαα is written in terms of the local
polarizationsPα(r) as

Lpαα =
1

2

[
〈Pα(r, t →∞), Pα(r)〉 − qp

]
(46)

qpα = (P stα (r))2 = 〈Pα(r)〉2 ∼ cd(1− cd) (47)

whereqp is the static glasslike parameter that is induced by the frozen SB defects with
concentrationcd , andχpαα(k) = λ2/w2

o(T , c,k). For the parameterϕp = βL
p
αα/χ

p
αα(0),

equation (45) atk = 0 takes the simple form

ϕp

1− ϕp = F
p(T , c)ϕp (48)

Fp(T , c) = c(1− c)
(

G

w2
o(T , c,0)

)2

. (49)

According to the article [32], the continuous dynamic transition from an ergodic to a non-
ergodic state takes place under the conditionFp(T , c) > 1. As a result, the parameter

ϕp = 1− 1

Fp(T , c)
(50)
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which characterizes the non-ergodic state rises continuously forT 6 Td . The temperature
of the dynamic transitionTd is found from the condition

Fp(Td, c) = 1. (51)

The conditions for the existence of a dynamic transition from an ergodic to a non-ergodic
state (equations (49) and (51)) require a weak stiffening of the soft modeω2

ν(T , c,0) =
ω2
ν(T ) + Gc and a strong dispersion of the random transition temperatures described by
6o
νν(z,k = 0) (∼c(1− c)G2). This case corresponds to very hard defects (i.e. a very large

value of the parameterG).
Let us estimate the lowest concentration of NSB defects that can induce the dynamic

transition in the nominally pure QPE. In this work, we suggest considering the oxygen
vacancies as very strong NSB defects that can actually induce a dynamic transition. This
suggestion is based on the experimentally observed tremendous shift in the ferroelectric
mode frequency with change in the oxygen vacancy concentration in SrTiO3 [7]. The effect
of oxygen vacancies corresponds to the action of very hard NSB defects (Ad � |A|) with
a very large value,G ≈ 6800 cm−2 per at.% of oxygen vacancies (or1Tc/at.% of oxygen
vacancies≈ 250 K) [7]. A similar effect of oxygen vacancies occurs for the soft structural
modes in SrTiO3 [33, 34]. Nevertheless, the value ofG for the ferroelectric mode is one
order of magnitude larger than that for the structural mode [34]. Substituting the value of
G and the experimental valuew2

o(T ≈ 30 K, c,0) ≈ 500 cm−2 [2] into the condition (51),
we obtainc ∼ 0.6× 10−6 for Td = 30 K in the nominally pure SrTiO3. In KTaO3, the
effect of oxygen vacancies is also very strong [8], but the value ofG, unfortunately, is
unknown. If we take the value ofG for SrTiO3 andw2

o(T ≈ 40 K, c,0) ≈ 900 cm−2 [2],
we can estimate the lowest concentration of oxygen vacancies which can induce a dynamic
transition in KTaO3. As a result, we havec ∼ 1.7× 10−6 for Td = 40 K in nominally pure
KTaO3. On the basis of the experimental study of the effect of oxygen vacancies on the
soft structural modes in SrTiO3, the estimate of the concentration of oxygen vacancies in
nominally pure SrTiO3 is c ∼ 2.5×10−5 [33]. This concentration is considerably higher than
the concentration of oxygen vacancies needed to give rise to the formation of a non-ergodic
state at low temperatures. Hence, a dynamic transition from an ergodic to a non-ergodic
state can actually be induced by the unavoidable oxygen vacancies acting as very hard NSB
defects in SrTiO3 and KTaO3.

A non-zero value of the polar non-ergodic parameterϕp for T 6 Tq can also give rise
to non-ergodic behaviour of the acoustic displacement–displacement relaxation function
Φa(z,k) because

lim
z→iε

(−zΣa(z,k)) > 0.

To simplify further investigation, the approximations for the acoustic relaxation kernel
Σa(z,k) are used. As in equation (45), we neglect thep-dependence of both the polar
relaxation functionΦp(z,p) and the correlation function of the static polar displacements
ξ stµ (−p)ξ stµ (p) induced by the random fields of the SB defects. As a result, we obtain for
k along one of the〈100〉 directions

lim
z→iε

(−zΣa(z, kα)) = k2
α

ρ
vcD

2
11q

pβLpαα (52)

where Lpαα and qp are given by (46) and (47) respectively, the conditions for the
electrostrictive constantsD11 � D12,D44 [5] are used, andρ = M/vc. To study the
behaviour of the acoustic non-ergodic parameter

La(k) = lim
z→iε

(−zΦa(z,k))
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in detail, we transform (40) into a more convenient form, fork along one of the〈100〉
directions:

βLaαα(kα)Aαα(kα)

1− βLaαα(kα)Aαα(kα)
= −z6a

αα(z, kα)χ
a
αα(kα) =

k2
α

ρ
vcD

2
11q

pβLpααA
−1
αα (kα) (53)

whereAαα(kα) is defined by (14). In addition, it should be noted that the right-hand part
of equation (53) isk-independent. As a result, the parameterϕa = βLaαα(kα)Aαα(kα) is
k-independent also. For the parameterϕa, equation (53) has the form

ϕa

1− ϕa = F
a(T , cd)ϕ

p (54)

Fa(T , cd) = ε(T )

4πC11
D2

11q
p ∼ cd(1− cd). (55)

Hereε(T ) = 4πλ2vc/w
2
o(T , c) is the dielectric susceptibility, andC11 = ρv2

l is the elastic
constant. As seen from (54), the conditions for a non-zero value of theϕa-parameter, which
characterizes the non-ergodic behaviour of the fluctuations of the acoustic displacements,
areFa(T , cd) > 0 andϕp > 0, which are the same as the conditions for a non-zero value
of ϕp, equation (51) (i.e.T 6 Td ). Hence, the SB defects do not change the condition (51),
but have the effect on the formation of LTC of fluctuations of acoustic displacements. As
noted above, a similarly unusual sudden formation of polar quasi-static lattice distortions
of nominally pure KTaO3 lightly doped with SB defects atT ∼ 40 K was detected by the
NMR method [19]. From (54), one obtains

ϕa = Fa(T , cd)ϕ
p

1+ Fa(T , cd)ϕp (56)

where the parameterϕa is k-independent, while the acoustic non-ergodic parameterLaαα(kα)

is k-dependent and has the form

Laαα(kα) =
ϕa

k2
αβv

2
l

. (57)

As seen from (57), thek-dependence of the acoustic non-ergodic parameter corresponds
to the formation of a long-time correlation of long-wavelength fluctuations of the acoustic
displacements (or a strain-domain-like state). In this case, the large correlated regions of the
acoustic displacements (or strains) are formed more easily than the small correlated regions
of the acoustic displacements. A similar phenomenon takes place in the non-ergodic state
of the mixed cyanide crystals K(CN)xBr1−x and (KCN)x(NaCN)1−x [15].

The LTC of long-wavelength fluctuations of the acoustic displacements is very important
for clarifying the origin of the domain-like state. It should be noted that the magnitude of the
acoustic parameterϕa is much less than that of the polar parameterϕp (for the case of very
hard NSB defects). In this case, the weak long-time correlation of the long-wavelength
fluctuations of the acoustic displacements is difficult to observe in comparison with the
long-time correlation of the local fluctuations of the polar displacements. To make the
strain-domain-like state easy to observe, the crystals of QPE need to be doped with SB
defects that induce random electric fields. The latest investigations of KTaO3 lightly doped
with off-centre Li ions [35] show that the slowly hopping dynamics of dipole (electric and
elastic) moments of Li is frozen in the non-equilibrium state atT > 50 K, and they cannot
take on long-range order, while linear birefringence develops forT 6 Td , which corresponds
to the formation of a strain-domain-like state [36]. In this case, the frozen dipole moments
can act as random fields, and can give rise to a readily observed strain-domain-like state.
Furthermore, the threshold temperature of the dipole glass state,Tg ' 40 K for x ≈ 0.22
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for K1−xLi xTaO3 [37], corresponds to the temperature of the anomaly in the vicinity of
40 K for nominally pure KTaO3 [19]. In this case, the condition for a non-ergodic state in
nominally pure KTaO3 can dictate the condition for glass state formation in K1−xLi xTaO3.
The latest study of the effect of the cooling rate on the time dependence of the dielectric
constant [17] confirms the existence of non-ergodic states in both nominally pure KTaO3 and
K1−xLi xTaO3 (x 6 0.025). A similar phenomenon, in the form of non-analytic behaviour of
the polarization response, which depends significantly on the small electric field amplitude
and is independent of the frequency, has been observed for KTa1−xNbxO3 (x 6 0.009) [38],
for which the dipole glass state appears atTg. Furthermore, this behaviour—in contrast to
the case for the usual dipole glass—persists for temperatures (∼45 K) that are appreciably
higher than the temperature at which the peak of the response is observed. In view of
this, the non-analytic behaviour of the response can be associated with the existence of a
non-ergodic state caused by oxygen vacancies forTd > Tg.

The results presented above demonstrate that a dynamic transition can be induced by
oxygen vacancies in SrTiO3 and KTaO3. In this case, the concentration of the oxygen
vacancies is the crucial parameter of the theory. The theory can be easily verified by
means of reduction (i.e. the increase of the concentration of the oxygen vacancies) or
oxidation (i.e. the decrease of the concentration of the oxygen vacancies) treatment of
SrTiO3 and KTaO3. For lightly reduced samples of QPE withc 6 10−4, one has
w2
o(T , c,0) ≈ w2

o(T , 0, 0), where the ferroelectric mode of the pure latticewo(T , 0, 0)
softens asT → 0. In this case, as seen from (49) and (51), the temperature of the dynamic
transitionTd increases with increasing concentration of oxygen vacancies. In connection
with this, it would be of considerable interest and is of importance to test the effects of
reduction and oxidation treatment on the non-ergodic states in SB-doped and nominally pure
SrTiO3 and KTaO3.

5. Conclusions

On the basis of a closed set of dynamic equations under the mode-coupling approximation,
this investigation demonstrates that hard NSB defects formed by the oxygen vacancies
can cause a dynamic transition from an ergodic to a non-ergodic state in the QPE. As a
consequence of this, LTC of the local fluctuations of the polar displacements (the polar
non-ergodic parameter) continuously arises forT 6 Td .

At the same time, LTC of long-wavelength fluctuations of the acoustic displacements
(the acoustic non-ergodic parameter) is also induced by NSB defects via the random local
piezoelectric coupling forT 6 Td . The random local piezoelectric coupling is caused by
the electrostrictive interaction modified by the random electric fields of the SB defects.
The acoustic non-ergodic parameter manifests itself as a strain-domain-like state without
modification of the lattice symmetry.

The estimations which are based on the conditions that must be met for the dynamic
transition to occur obtained here show that the unavoidable oxygen vacancies in the
nominally pure SrTiO3 and KTaO3 can lead to a non-ergodic state. If the unavoidable
oxygen vacancies are not sufficient in number to induce a dynamic transition, the required
concentration can be obtained by a reduction treatment.

The conditions that must be met for a non-ergodic state to be induced by oxygen
vacancies in the vicinity ofT ∼ 40 K in nominally pure KTaO3 can determine the threshold
condition for the appearance of the glass state in K1−xLi xTaO3, where the dipole moments
of Li off-centre impurities are frozen in the non-equilibrium state forT > Td and cannot
take on a long-range order.
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The results obtained above show that the elucidation of the role of oxygen vacancies in
the formation of a non-ergodic state in SrTiO3 and KTaO3 is a very important and interesting
problem, and requires further experimental and theoretical investigation.

Acknowledgment

This work was partially supported by Grant No U4B200 from the International Science
Foundation.

References

[1] Müller K A and Burkard H 1979Phys. Rev.B 19 3593
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